Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 193(12): 1953-1968, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717941

RESUMO

Aging is associated with nonresolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a proresolving ligand that acts through the G-protein-coupled receptor called GPR18. Unbiased RNA sequencing revealed increased Gpr18 expression in macrophages from old mice, and in livers from elderly humans, which was associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lacked GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, increased monocyte-derived macrophages, and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly on the bone marrow to increase monocyte-macrophage progenitors. A transplantation assay further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice. Transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, this study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.


Assuntos
Medula Óssea , Fígado Gorduroso , Pessoa de Meia-Idade , Humanos , Camundongos , Animais , Idoso , Medula Óssea/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento , Cirrose Hepática , Fibrose , Colágeno/genética , Camundongos Endogâmicos C57BL
2.
Redox Biol ; 65: 102838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573836

RESUMO

Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.


Assuntos
Globinas , Proteína HMGB2 , Animais , Camundongos , Citoglobina/genética , Dano ao DNA , Globinas/genética , Globinas/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Fatores de Transcrição/genética
3.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214992

RESUMO

Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.

4.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37034694

RESUMO

The oxidant hydrogen peroxide serves as a signaling molecule that alters many aspects of cardiovascular functions. Recent studies suggest that cytoglobin - a hemoglobin expressed in the vasculature - may promote electron transfer reactions with proposed functions in hydrogen peroxide decomposition. Here, we determined the extent to which cytoglobin regulates intracellular hydrogen peroxide and established mechanisms. We found that cytoglobin decreased the hyperoxidation of peroxiredoxins and maintained the activity of peroxiredoxin 2 following challenge with exogenous hydrogen peroxide. Cytoglobin promoted a reduced intracellular environment and facilitated the reduction of the thiol-based hydrogen peroxide sensor Hyper7 after bolus addition of hydrogen peroxide. Cytoglobin also limited the inhibitory effect of hydrogen peroxide on glycolysis and reversed the oxidative inactivation of the glycolytic enzyme GAPDH. Our results indicate that cytoglobin in cells exists primarily as oxyferrous cytoglobin (CygbFe 2+ -O 2 ) with its cysteine residues in the reduced form. We found that the specific substitution of one of two cysteine residues on cytoglobin (C83A) inhibited the reductive activity of cytoglobin on Hyper7 and GAPDH. Carotid arteries from cytoglobin knockout mice were more sensitive to glycolytic inhibition by hydrogen peroxide than arteries from wildtype mice. Together, these results support a role for cytoglobin in regulating intracellular redox signals associated with hydrogen peroxide through oxidation of its cysteine residues, independent of hydrogen peroxide reaction at its heme center.

5.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36711905

RESUMO

Aging is associated with non-resolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a pro-resolving ligand that acts through the G-protein coupled receptor (GPCR) called GRP18. Using an unbiased screen, we report increased Gpr18 expression in macrophages from old mice and in livers from elderly humans that is associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lack GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, monocyte-derived macrophages and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly upon the bone marrow to increase monocyte-macrophage progenitors. Using a transplantation assay we further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice, and transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, our study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...